首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3155篇
  免费   129篇
  国内免费   18篇
测绘学   114篇
大气科学   358篇
地球物理   657篇
地质学   971篇
海洋学   345篇
天文学   601篇
综合类   4篇
自然地理   252篇
  2023年   10篇
  2022年   12篇
  2021年   33篇
  2020年   45篇
  2019年   46篇
  2018年   91篇
  2017年   67篇
  2016年   118篇
  2015年   68篇
  2014年   101篇
  2013年   151篇
  2012年   145篇
  2011年   174篇
  2010年   147篇
  2009年   203篇
  2008年   195篇
  2007年   164篇
  2006年   139篇
  2005年   120篇
  2004年   127篇
  2003年   117篇
  2002年   103篇
  2001年   80篇
  2000年   87篇
  1999年   75篇
  1998年   88篇
  1997年   54篇
  1996年   50篇
  1995年   33篇
  1994年   29篇
  1993年   36篇
  1992年   23篇
  1991年   37篇
  1990年   14篇
  1989年   20篇
  1988年   10篇
  1987年   22篇
  1986年   11篇
  1985年   23篇
  1984年   27篇
  1983年   22篇
  1982年   16篇
  1981年   9篇
  1980年   14篇
  1979年   11篇
  1978年   9篇
  1977年   10篇
  1976年   15篇
  1975年   13篇
  1973年   9篇
排序方式: 共有3302条查询结果,搜索用时 31 毫秒
91.
92.
Military training activities reduce vegetation cover, disturb crusts, and degrade soil aggregates, making the land more vulnerable to wind erosion. The objective of this study was to quantify wind erosion rates for typical conditions at the Marine Corps Air Ground Combat Center, Twentynine Palms, CA, U.S.A. Five Big Spring Number Eight (BSNE) sampler stations were installed at each of five sites. Each BSNE station consisted of five BSNE samplers with the lowest sampler at 0·05 m and the highest sampler at 1·0 m above the soil surface. Once a month, sediment was collected from the samplers for analysis. Occurrence of saltating soil aggregates was recorded every hour using Sensits, one at each site. The site with the most erosion had a sediment discharge of 311 kg m−1 over a period of 17 months. Other sites eroded much less because of significant rock cover or the presence of a crust. Hourly sediment discharge was estimated combining hourly Sensit count and monthly sediment discharge measured using BSNE samplers. More simultaneously measured data are needed to better characterize the relationship between these two and reconstruct a detailed time-series of wind erosion. This measured time-series can then be used for comparison with simulation results from process-based wind erosion models such as the Wind Erosion Prediction System (WEPS), once it has been adapted to the unique aspects of military lands.  相似文献   
93.
This study provides a detailed magnetostratigraphic record of subsidence in the Linxia Basin, documenting a 27 Myr long sedimentary record from the northeastern edge of the Tibetan Plateau. Deposition in the Linxia Basin began at 29 Ma and continued nearly uninterruptedly until 1.7 Ma. Increasing rates of subsidence between 29 and 6 Ma in the Linxia Basin suggest deposition in the foredeep portion of a flexural basin and constrain the timing of shortening in the northeastern margin of the plateau to Late Oligocene–Late Miocene time. By Late Miocene–Early Pliocene time, a decrease in subsidence rates in the Linxia Basin associated with thrust faulting and a 10° clockwise rotation in the basin indicates that the deformation front of the Tibetan plateau had propagated into the currently deforming region northeast of the plateau.  相似文献   
94.
We compare two geophysical survey measurements of the same type made at different times in order to characterize the change in the geological medium during the elapsed time. The aim of this study is to develop a strategy using a full non-linear inversion algorithm as the interpretation tool. In this way, not only the location and the form of the changes are recovered, but also the changes in the material parameters of the geological medium can be estimated. In order to solve this fully non-linear problem, the so-called ‘multiplicative regularized contrast source inversion’ (MR-CSI) method is employed. The unique property of this iterative method is that it does not solve the forward problem at each iterative step. This makes it possible to use the non-linear inversion algorithm for large-scale computation problems. The numerical results show that by taking into account the non-linear nature of the problem, interpretation of the time-lapse data can be significantly improved, compared with that obtained using linear inversion.  相似文献   
95.
The Bandombaai Complex (southern Kaoko Belt, Namibia) consists of three main intrusive rock types including metaluminous hornblende- and sphene-bearing quartz diorites, allanite-bearing granodiorites and granites, and peraluminous garnet- and muscovite-bearing leucogranites. Intrusion of the quartz diorites is constrained by a U–Pb zircon age of 540±3 Ma.

Quartz diorites, granodiorites and granites display heterogeneous initial Nd- and O isotope compositions (Nd (540 Ma)=−6.3 to −19.8; δ18O=9.0–11.6‰) but rather low and uniform initial Sr isotope compositions (87Sr/86Srinitial=0.70794–0.70982). Two leucogranites and one aplite have higher initial 87Sr/86Sr ratios (0.70828–0.71559), but similar initial Nd (−11.9 to −15.8) and oxygen isotope values (10.5–12.9‰). The geochemical and isotopic characteristics of the Bandombaai Complex are distinct from other granitoids of the Kaoko Belt and the Central Zone of the Damara orogen. Our study suggests that the quartz diorites of the Bandombaai Complex are generated by melting of heterogeneous mafic lower crust. Based on a comparison with results from amphibolite-dehydration melting experiments, a lower crustal garnet- and amphibole-bearing metabasalt, probably enriched in K2O, is a likely source rock for the quartz diorites. The granodiorites/granites show low Rb/Sr (<0.6) ratios and are probably generated by partial melting of meta-igneous (intermediate) lower crustal sources by amphibole-dehydration melting. Most of the leucogranites display higher Rb/Sr ratios (>1) and are most likely generated by biotite-dehydration melting of heterogeneous felsic lower crust. All segments of the lower crust underwent partial melting during the Pan-African orogeny at a time (540 Ma) when the middle crust of the central Damara orogen also underwent high T, medium P regional metamorphism and melting. Geochemical and isotope data from the Bandombaai Complex suggest that the Pan-African orogeny in this part of the orogen was not a major crust-forming episode. Instead, even the most primitive rock types of the region, the quartz diorites, represent recycled lower crustal material.  相似文献   

96.
van Westen  C. J.  Rengers  N.  Soeters  R. 《Natural Hazards》2003,30(3):399-419
The objective of this paper is to evaluate the importance of geomorphological expert knowledge in the generation of landslide susceptibility maps, using GIS supported indirect bivariate statistical analysis. For a test area in the Alpago region in Italy a dataset was generated at scale 1:5,000. Detailed geomorphological maps were generated, with legends at different levels of complexity. Other factor maps, that were considered relevant for the assessment of landslide susceptibility, were also collected, such as lithology, structural geology, surficial materials, slope classes, land use, distance from streams, roads and houses. The weights of evidence method was used to generate statistically derived weights for all classes of the factor maps. On the basis of these weights, the most relevant maps were selected for the combination into landslide susceptibility maps. Six different combinations of factor maps were evaluated, with varying geomorphological input. Success rates were used to classify the weight maps into three qualitative landslide susceptibility classes. The resulting six maps were compared with a direct susceptibility map, which was made by direct assignment of susceptibility classes in the field. The analysis indicated that the use of detailed geomorphological information in the bivariate statistical analysis raised the overall accuracy of the final susceptibility map considerably. However, even with the use of a detailed geomorphological factor map, the difference with the separately prepared direct susceptibility map is still significant, due to the generalisations that are inherent to the bivariate statistical analysis technique.  相似文献   
97.
98.
In order to test different hypotheses concerning the Paleozoic evolution of the Ural–Mongol belt (UMB) and the amalgamation of Eurasia, we studied Middle Devonian basalts from two localities (11 sites) and Lower Silurian volcanics, redbeds, and intra-formational conglomerates from three localities (20 sites) in the Chingiz Range of East Kazakhstan. The Devonian rocks prove to be heavily overprinted in the late Paleozoic, and a high-temperature, presumably primary, southerly, and down component is isolated at only four sites from a homoclinal section. Most Silurian redbeds are found to be remagnetized in the late Paleozoic; in contrast, a bipolar near-horizontal remanence, isolated from Silurian volcanics, is most probably primary as indicated by positive tilt and conglomerate tests. Analysis of paleomagnetic data from the Chingiz Range shows that southward-pointing directions in Ordovician, Silurian, and Devonian rocks are of normal polarity and hence indicate large-scale rotations after the Middle Devonian. The Chingiz paleomagnetic directions can be compared with Paleozoic data from the North Tien Shan and with the horseshoe-shaped distribution of subduction-related volcanic complexes in Kazakhstan. Both paleomagnetic and geological data support the idea that today's strongly curved volcanic belts of Kazakhstan are an orocline, deformed mostly before mid-Permian time. Despite the determination of nearly a dozen new Paleozoic paleopoles in this study and other recent publications by our team, significant temporal and spatial gaps remain in our knowledge of the paleomagnetic directions during the middle and late Paleozoic. However, the paleomagnetic results from the Chingiz Range and the North Tien Shan indicate that these areas show generally coherent motions with Siberia and Baltica, respectively.  相似文献   
99.
Establishing relative and absolute time frameworks for the sedimentary, magmatic, tectonic and gold mineralisation events in the Norseman-Wiluna Belt of the Archean Yilgarn Craton of Western Australia, has long been the main aim of research efforts. Recently published constraints on the timing of sedimentation and absolute granite ages have emphasized the shortcomings of the established rationale used for interpreting the timing of deformation events. In this paper the assumptions underlying this rationale are scrutinized, and it is shown that they are the source of significant misinterpretations. A revised time chart for the deformation events of the belt is established. The first shortening phase to affect the belt, D1, was preceded by an extensional event D1e and accompanied by a change from volcanic-dominated to plutonic-dominated magmatism at approximately 2685–2675 Ma. Later extension (D2e) controlled deposition of the ca 2655 Ma Kurrawang Sequence and was followed by D2, a major shortening event, which folded this sequence. D2 must therefore have started after 2655 Ma—at least 20 Ma later than previously thought and after the voluminous 2670–2655 Ma high-Ca granite intrusion. Younger transcurrent deformation, D3–D4, waned at around 2630 Ma, suggesting that the crustal shortening deformation cycle D2–D4 lasted approximately 20–30 Ma, contemporaneous with low-volume 2650–2630 Ma low-Ca granites and alkaline intrusions. Time constraints on gold deposits suggest a late mineralisation event between 2640–2630 Ma. Thus, D2–D4 deformation cycle and late felsic magmatism define a 20–30 Ma long tectonothermal event, which culminated with gold mineralisation. The finding that D2 folding took place after voluminous high-Ca granite intrusion led to research into the role of competent bodies during folding by means of numerical models. Results suggest that buoyancy-driven doming of pre-tectonic competent bodies trigger growth of antiforms, whereas non-buoyant, competent granite bodies trigger growth of synforms. The conspicuous presence of pre-folding granites in the cores of anticlines may be a result from active buoyancy doming during folding.  相似文献   
100.
 A two-dimensional vertically integrated ice flow model has been developed to test the importance of various processes and concepts used for the prediction of the contribution of the Greenland ice-sheet to sea-level rise over the next 350 y (short-term response). The mass balance is modelled by the degree-day method and the energy-balance method. The lithosphere is considered to respond isostatically to a point load and the time evolution of the bedrock follows from a viscous asthenosphere. According to the IPCC-IS92a scenario (with constant aerosols after 1990) the Greenland ice-sheet is likely to cause a global sea level rise of 10.4 cm by 2100 AD. It is shown, however, that the result is sensitive to precise model formulations and that simplifications as used in the sea-level projection in the IPCC-96 report yield less accurate results. Our model results indicate that, on a time scale of a hundred years, including the dynamic response of the ice-sheet yields more mass loss than the fixed response in which changes in geometry are not incorporated. It appears to be important to consider sliding, as well as the fact that climate sensitivity increases for larger perturbations. Variations in predicted sea-level change on a time scale of hundred years depend mostly on the initial state of the ice-sheet. On a time scale of a few hundred years, however, the variability in the predicted melt is dominated by the variability in the climate scenarios. Received: 21 August 1996/Accepted: 12 May 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号